

Reg. No. :					
------------	--	--	--	--	--

Question Paper Code: 90343

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019 Fourth Semester

Computer and Communication Engineering MA8451 - PROBABILITY AND RANDOM PROCESSES

(Common to Electronics and Communication Engineering/Electronics and Telecommunication Engineering)

(Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

1. Let A and B be two events such that P(A) = 0.5, P(B) = 0.3 and $P(A \cap B) = 0.15$. Compute P(B|A) and $P(\overline{A} \cap B)$.

2. The R.V. X has p.m.f. $P(X = x) = \begin{cases} \frac{c}{x}, & x = 1, 2, 3, \\ 0, & \text{otherwise} \end{cases}$ Obtain:

i) The value of 'C'

ii) $P(X \ge 2)$.

3. The R.V.s X and Y have joint p.d.f. $f(x, y) = \begin{cases} \frac{1}{15} & \text{, } 0 \le x \le 5, \\ 0 \le y \le 3 & \text{. What is } P(Y > X) ? \end{cases}$

- 4. Prove that the correlation coefficient ρ_{XY} of the R.V.s X and Y takes value in the range -1 and 1.
- 5. Define Markov process.
- 6. Let X(t) be a wide-sense stationary random process with E(X(t)) = 0 and $Y(t) = X(t) - X(t + \tau), \tau > 0$. Compute E(Y(t)) and Var(Y(t)).

7. A stationary random process X(t) has an autocorrelation function $R_{XX}(\tau) = \frac{4\tau^2 + 6}{\tau^2 + 1}$. Find E(X(t)) and $E(X^2(t))$.

8. Determine which of the following functions are power spectrum, which are not?

i)
$$S_{XX}(\omega) = e^{-(\omega-2)^2}$$

i)
$$S_{XX}(\omega) = e^{-(\omega - 2)^2}$$
 ii) $S_{XX}(\omega) = \frac{\cos^2 \omega}{\omega^4 + 2\omega^2 + 1}$

- 9. Define:
 - i) Linear Time-Invariant System
 - ii) Casual system.
- 10. A random process X(t) is the input to a linear system whose impulse response is $h(t) = 2e^{-t}$, $t \ge 0$. Given $R_{XX}(\tau) = e^{-3|\tau|}$, find the power spectral density of the output process y(t).

 $(5\times16=80 \text{ Marks})$

(8)

- 11. a) i) Companies B_1 , B_2 and B_3 produce 30%, 45% and 25% of the cars respectively. It is known that 2%, 3% and 2% of these cars produced from are defective.
 - 1) What is the probability that a car purchased is defective?
 - 2) If a car purchased is found to be defective, what is the probability that this car is produced by company B_1 ?
- ii) Let X be a Poisson variate such that P(X = 1) = 2P(X = 2). Calculate:
 - 1) P(X = 0) and P(X > 0.5)

$$2) \quad P\left(\frac{3}{2} < X \le \frac{7}{2}\right)$$

3)
$$E\left(\frac{3}{2}X+1\right)$$
 (OR)

3)
$$E\left(\frac{3}{2}X+1\right)$$
 4) $Var\left(\frac{1}{2}X-1\right)$. (8)

b) i) The C.D.F. of the R.V. X is given by

$$F(x) = \begin{cases} 0 & , & x < -1 \\ \frac{x+1}{2} & , & -1 \le x < 1 \\ 1 & , & x \ge 1 \end{cases}$$

Compute:

1)
$$P(|X| < \frac{1}{4})$$

2)
$$P(X > -\frac{1}{2})$$
 and $P(X < \frac{3}{4})$

- 3) E(X)
- 4) Var (X).

(8)

ii) Suppose the R.V. X has a geometric distribution

$$P(X = x) = \begin{cases} \left(\frac{1}{2}\right)^{x}, & x = 1, 2, 3, \dots \\ 0, & \text{otherwise} \end{cases}$$

- 1) $P(X \le 2)$
- 2) P(X > 4/X > 2)
- 3) C.D.F. F(x), of R.V. X.
- (8)

(8)

(8)

(8)

12. a) i) Let the joint p.m.f. of R.V. (X, Y) be given as

$$P(X = x, Y = y) = \begin{cases} \frac{x + y}{12} &, & x = 1, 2, y = 1, 2\\ 0 &, & \text{otherwise} \end{cases}$$

Determine:

- 1) The marginal p.m.f. s of X and Y
- 2) The conditional p.m.f. P(X = x/Y = z)

3) Are the R.V.s X and Y independent? Justify your answer. (8)

ii) Let X and Y be two independent identically distributed exponential R.V.s with parameter 1. Find the joint p.d.f. of R.V.s U = X + Y and $V = \frac{X}{Y}$ and hence (8) obtain the marginal p.d.f. of R.V. U.

(OR)

b) i) The joint p.d.f. of R.V.s X and Y is given as

$$f(x,y) = \begin{cases} \frac{5y}{4}, & -1 \le x \le 1, \ x^2 \le y \le 1\\ 0, & \text{otherwise} \end{cases}$$

Find:

1) The marginal p.d.f.s of X and Y

2) Are the R.V.s X and Y independent? Justify your result. (8)

ii) Suppose the joint p.d.f. of the random variables X and Y is given as

$$f(x,y) = \begin{cases} \frac{1}{49} e^{\frac{-y}{7}} &, & 0 \le x \le y < \alpha' \\ 0 &, & \text{otherwise} \end{cases}$$

Compute Cov (X, Y).

13. a) i) A random process is given by $X(t) = U + V \cos(\omega t + \phi)$, where U is a random variable that is uniformly distributed between - 2 and 2, V is a random

variable with E(V) = 0 and Var(V) = 2, ω is a constant and ϕ is a random variable that is uniformly distributed from $-\pi$ to π . Here U, V and ϕ are independent random variables. Is the process X(t) stationary in wide-sense? Explain.

ii) State and prove the additive property of the Poisson process.

(OR)

b) i) Show that the inter-arrival time between two consecutive arrivals is an (8)exponential random variable.

ii) Discuss the random telegraph signal process X(t) and hence obtain E(X(t)) and $E(X(t)|X(t+\tau))$. Is the process X(t) a wide-sense stationary? Explain. (8)

- 14. a) i) For the jointly wide-sense stationary processes X(t) and Y(t), show that
 - 1) $R_{XY}(-\tau) = R_{YX}(\tau)$
 - $2) \mid \mathbf{R}_{\mathbf{X}\mathbf{Y}}\left(\tau\right) \mid \leq \frac{1}{2} \left[\mathbf{R}_{\mathbf{X}\mathbf{X}}(0) + \mathbf{R}_{\mathbf{Y}\mathbf{Y}}(0) \right]$
 - 3) $\left| R_{XY}(\tau) \right| \le \sqrt{R_{XX}(0)R_{YY}(0)}$ (8)
 - ii) A stationary random process X(t) has the power spectral density function $S_{XX}(\omega) = \frac{1}{(4+\omega^2)^2}$. Obtain the correlation function $R_{XX}(\tau)$ and the power of the process X(t).

(OR)

(OR)

- b) i) Find the power spectral density of a wide-sense stationary process with an autocorrelation function $R_{XX}(\tau) = e^{\frac{-\tau^2}{2}}$. (8)
 - ii) Find the correlation function $R_{XX}(\tau)$ and the average power for spectral density $S_{XX}(\omega) = \frac{3\omega^2 + 4}{2\omega^4 + 6\omega^2 + 4}$. (8)
- 15. a) i) A random process X(t) is the input to a linear system whose impulse is $h(t) = 2e^{-t}$, $t \ge 0$. If the auto correlation function of the process X(t) is $R_{XX}(\tau) = e^{-2|\tau|}$, determine the cross-correlation function $R_{XY}(\tau)$. (8)
 - ii) Let X(t) be the input process to a linear system with autocorrelation function $R_{XX}(\tau) = 3 \, \delta(\tau)$ and the impulse response function $h(t) = e^{-bt}$, t > 0. Determine the autocorrelation function of the output process Y(t) and hence obtain $E(Y^2(t))$.

b) i) A random process X(t) is applied to a network with impulse response function $h(t) = e^{-bt}$, t > 0, where b > 0 is a constant. The cross-correlation of X(t) with output Y(t) is known to have the form $R_{XY}(\tau) = \tau e^{-b\tau}$, $\tau > 0$. Find the auto correlation function of Y(t).

ii) Find the input autocorrelation function, output autocorrelation function and output spectral density of the RC-low pass filter with transfer function $H(\omega) = \frac{1}{1+j\omega RC} \text{ and is subject to a white noise of spectral density function}$

$$S_{NN}(\omega) = \frac{N_s}{2}.$$
 (8)